Cargando…
Spatio-temporal Object-Oriented Bayesian Network modelling of the COVID-19 Italian outbreak data
The spatial epidemic dynamics of COVID-19 outbreak in Italy were modelled by means of an Object-Oriented Bayesian Network in order to explore the dependence relationships, in a static and a dynamic way, among the weekly incidence rate, the intensive care units occupancy rate and that of deaths. Foll...
Autores principales: | Vitale, Vincenzina, D’Urso, Pierpaolo, De Giovanni, Livia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277433/ https://www.ncbi.nlm.nih.gov/pubmed/34277332 http://dx.doi.org/10.1016/j.spasta.2021.100529 |
Ejemplares similares
-
Measuring Competitiveness at NUTS3 Level and Territorial Partitioning of the Italian Provinces
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Spatial robust fuzzy clustering of COVID 19 time series based on B-splines
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
A D-vine copula-based quantile regression model with spatial dependence for COVID-19 infection rate in Italy
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Editorial: Spatio-temporal dynamics of Covid
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Community mobility in the European regions during COVID-19 pandemic: A partitioning around medoids with noise cluster based on space–time autoregressive models
por: D’Urso, Pierpaolo, et al.
Publicado: (2022)