Cargando…
Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies
The purpose of this study was to propose a machine learning model and assess its ability to classify TMJ pathologies on magnetic resonance (MR) images. This retrospective cohort study included 214 TMJs from 107 patients with TMJ signs and symptoms. A radiomics platform was used to extract (Huiying M...
Autores principales: | Orhan, Kaan, Driesen, Lukas, Shujaat, Sohaib, Jacobs, Reinhilde, Chai, Xiangfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277497/ https://www.ncbi.nlm.nih.gov/pubmed/34327235 http://dx.doi.org/10.1155/2021/6656773 |
Ejemplares similares
-
Incidental Findings in TMJ Imaging
por: Orhan, Kaan, et al.
Publicado: (2018) -
Integration of imaging modalities in digital dental workflows - possibilities, limitations, and potential future developments
por: Shujaat, Sohaib, et al.
Publicado: (2021) -
3D Morphology Analysis of TMJ Articular Eminence in Magnetic Resonance Imaging
por: Nascimento Falcão, Izabella, et al.
Publicado: (2017) -
Three-Dimensional Pharyngeal Airway Space Changes Following Isolated Mandibular Advancement Surgery in 120 Patients: A 1-Year Follow-up Study
por: Shujaat, Sohaib, et al.
Publicado: (2022) -
Trueness of cone-beam computed tomography-derived skull models fabricated by different technology-based three-dimensional printers
por: Wang, Xiaotong, et al.
Publicado: (2023)