Cargando…
Regularized machine learning on molecular graph model explains systematic error in DFT enthalpies
A major goal of materials research is the discovery of novel and efficient heterogeneous catalysts for various chemical processes. In such studies, the candidate catalyst material is modeled using tens to thousands of chemical species and elementary reactions. Density Functional Theory (DFT) is wide...
Autores principales: | Bhattacharjee, Himaghna, Anesiadis, Nikolaos, Vlachos, Dionisios G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277863/ https://www.ncbi.nlm.nih.gov/pubmed/34257362 http://dx.doi.org/10.1038/s41598-021-93854-w |
Ejemplares similares
-
Calibrating DFT Formation
Enthalpy Calculations by
Multifidelity Machine Learning
por: Gong, Sheng, et al.
Publicado: (2022) -
LigninGraphs: lignin structure determination with multiscale graph modeling
por: Wang, Yifan, et al.
Publicado: (2022) -
Machine learning enabling prediction of the bond dissociation enthalpy of hypervalent iodine from SMILES
por: Nakajima, Masaya, et al.
Publicado: (2021) -
Distance-regular graphs
por: Brouwer, Andries E, et al.
Publicado: (1989) -
Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials
por: Lansford, Joshua L., et al.
Publicado: (2020)