Cargando…
Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning
Over the past years, large consortia have been established to fuel the sequencing of whole genomes of many cancer patients. Despite the increased abundance in tools to study the impact of SNVs, non-coding SVs have been largely ignored in these data. Here, we introduce svMIL2, an improved version of...
Autores principales: | Nieboer, Marleen M., Nguyen, Luan, de Ridder, Jeroen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277903/ https://www.ncbi.nlm.nih.gov/pubmed/34257393 http://dx.doi.org/10.1038/s41598-021-93917-y |
Ejemplares similares
-
PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation
por: Mahmoud, Medhat, et al.
Publicado: (2021) -
Long-read-based single sperm genome sequencing for chromosome-wide haplotype phasing of both SNPs and SVs
por: Xie, Haoling, et al.
Publicado: (2023) -
Dynamical Behavior of SEIR-SVS Epidemic Models with Nonlinear Incidence and Vaccination
por: Feng, Xiao-mei, et al.
Publicado: (2022) -
Santa Inés Zacatelco (1646-1812) : contribución a la demografía histórica del México colonial
por: Morin, Claude, 1929-
Publicado: (1973) -
1646. Optimizing Antibiotic Durations of Therapy in Pediatric Community-acquired Pneumonia
por: Cook, Gregory, et al.
Publicado: (2023)