Cargando…
MIDCAN: A multiple input deep convolutional attention network for Covid-19 diagnosis based on chest CT and chest X-ray
BACKGROUND: COVID-19 has caused 3.34m deaths till 13/May/2021. It is now still causing confirmed cases and ongoing deaths every day. METHOD: This study investigated whether fusing chest CT with chest X-ray can help improve the AI's diagnosis performance. Data harmonization is employed to make a...
Autores principales: | Zhang, Yu-Dong, Zhang, Zheng, Zhang, Xin, Wang, Shui-Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277963/ https://www.ncbi.nlm.nih.gov/pubmed/34276114 http://dx.doi.org/10.1016/j.patrec.2021.06.021 |
Ejemplares similares
-
A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest X-rays
por: Innat, Mohammed, et al.
Publicado: (2023) -
Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images
por: Ayan, Enes, et al.
Publicado: (2021) -
Utilization of Deep Convolutional Neural Networks for Accurate Chest X-Ray Diagnosis and Disease Detection
por: Mann, Mukesh, et al.
Publicado: (2023) -
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
por: Rammuni Silva, Ravidu Suien, et al.
Publicado: (2022) -
Concordance of chest x-ray with chest CT by body mass index
por: Heston, Thomas F., et al.
Publicado: (2023)