Cargando…
Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease
Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. Thes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Brain and Neural Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278136/ https://www.ncbi.nlm.nih.gov/pubmed/34045369 http://dx.doi.org/10.5607/en21013 |
_version_ | 1783722204104491008 |
---|---|
author | An, Heeyoung Lee, Hyowon Yang, Seulkee Won, Woojin Lee, C. Justin Nam, Min-Ho |
author_facet | An, Heeyoung Lee, Hyowon Yang, Seulkee Won, Woojin Lee, C. Justin Nam, Min-Ho |
author_sort | An, Heeyoung |
collection | PubMed |
description | Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD. |
format | Online Article Text |
id | pubmed-8278136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Korean Society for Brain and Neural Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-82781362021-07-26 Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease An, Heeyoung Lee, Hyowon Yang, Seulkee Won, Woojin Lee, C. Justin Nam, Min-Ho Exp Neurobiol Original Article Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD. The Korean Society for Brain and Neural Sciences 2021-06-30 2021-05-28 /pmc/articles/PMC8278136/ /pubmed/34045369 http://dx.doi.org/10.5607/en21013 Text en Copyright © Experimental Neurobiology 2021 https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article An, Heeyoung Lee, Hyowon Yang, Seulkee Won, Woojin Lee, C. Justin Nam, Min-Ho Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease |
title | Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease |
title_full | Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease |
title_fullStr | Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease |
title_full_unstemmed | Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease |
title_short | Adenovirus-induced Reactive Astrogliosis Exacerbates the Pathology of Parkinson’s Disease |
title_sort | adenovirus-induced reactive astrogliosis exacerbates the pathology of parkinson’s disease |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278136/ https://www.ncbi.nlm.nih.gov/pubmed/34045369 http://dx.doi.org/10.5607/en21013 |
work_keys_str_mv | AT anheeyoung adenovirusinducedreactiveastrogliosisexacerbatesthepathologyofparkinsonsdisease AT leehyowon adenovirusinducedreactiveastrogliosisexacerbatesthepathologyofparkinsonsdisease AT yangseulkee adenovirusinducedreactiveastrogliosisexacerbatesthepathologyofparkinsonsdisease AT wonwoojin adenovirusinducedreactiveastrogliosisexacerbatesthepathologyofparkinsonsdisease AT leecjustin adenovirusinducedreactiveastrogliosisexacerbatesthepathologyofparkinsonsdisease AT namminho adenovirusinducedreactiveastrogliosisexacerbatesthepathologyofparkinsonsdisease |