Cargando…
Beyond Tripeptides Two-Step Active Machine Learning for Very Large Data sets
[Image: see text] Self-assembling peptide nanostructures have been shown to be of great importance in nature and have presented many promising applications, for example, in medicine as drug-delivery vehicles, biosensors, and antivirals. Being very promising candidates for the growing field of bottom...
Autores principales: | van Teijlingen, Alexander, Tuttle, Tell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278388/ https://www.ncbi.nlm.nih.gov/pubmed/33904712 http://dx.doi.org/10.1021/acs.jctc.1c00159 |
Ejemplares similares
-
Short Peptide
Self-Assembly in the Martini Coarse-Grain
Force Field Family
por: van Teijlingen, Alexander, et al.
Publicado: (2023) -
Artificial Intelligence and Health in Nepal
por: van Teijlingen, Alexander, et al.
Publicado: (2020) -
Comprehensive Evaluation
and Comparison of Machine
Learning Methods in QSAR Modeling of Antioxidant Tripeptides
por: Du, Zhenjiao, et al.
Publicado: (2022) -
Constant pH Coarse-Grained Molecular Dynamics with
Stochastic Charge Neutralization
por: van Teijlingen, Alexander, et al.
Publicado: (2022) -
Justificatory explanations: a step beyond explainability in machine learning
por: Guersenzvaig, A, et al.
Publicado: (2023)