Cargando…
Characteristics of Speech-Evoked Envelope Following Responses in Infancy
Envelope following responses (EFRs) may be a useful tool for evaluating the audibility of speech sounds in infants. The present study aimed to evaluate the characteristics of speech-evoked EFRs in infants with normal hearing, relative to adults, and identify age-dependent changes in EFR characterist...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278440/ https://www.ncbi.nlm.nih.gov/pubmed/34251887 http://dx.doi.org/10.1177/23312165211004331 |
Sumario: | Envelope following responses (EFRs) may be a useful tool for evaluating the audibility of speech sounds in infants. The present study aimed to evaluate the characteristics of speech-evoked EFRs in infants with normal hearing, relative to adults, and identify age-dependent changes in EFR characteristics during infancy. In 42 infants and 21 young adults, EFRs were elicited by the first (F1) and the second and higher formants (F2+) of the vowels /u/, /a/, and /i/, dominant in low and mid frequencies, respectively, and by amplitude-modulated fricatives /s/ and /∫/, dominant in high frequencies. In a subset of 20 infants, the in-ear stimulus level was adjusted to match that of an average adult ear (65 dB sound pressure level [SPL]). We found that (a) adult–infant differences in EFR amplitude, signal-to-noise ratio, and intertrial phase coherence were larger and spread across the frequency range when in-ear stimulus level was adjusted in infants, (b) adult–infant differences in EFR characteristics were the largest for low-frequency stimuli, (c) infants demonstrated adult-like phase coherence when they received a higher (i.e., unadjusted) stimulus level, and (d) EFR phase coherence and signal-to-noise ratio changed with age in the first year of life for a few F2+ vowel stimuli in a level-specific manner. Together, our findings reveal that development-related changes in EFRs during infancy likely vary by stimulus frequency, with low-frequency stimuli demonstrating the largest adult–infant differences. Consistent with previous research, our findings emphasize the significant role of stimulus level calibration methods while investigating developmental trends in EFRs. |
---|