Cargando…
MALBoost: a web-based application for gene regulatory network analysis in Plasmodium falciparum
BACKGROUND: Gene Regulatory Networks (GRN) produce powerful insights into transcriptional regulation in cells. The power of GRNs has been underutilized in malaria research. The Arboreto library was incorporated into a user-friendly web-based application for malaria researchers (http://malboost.bi.up...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278594/ https://www.ncbi.nlm.nih.gov/pubmed/34261498 http://dx.doi.org/10.1186/s12936-021-03848-2 |
Sumario: | BACKGROUND: Gene Regulatory Networks (GRN) produce powerful insights into transcriptional regulation in cells. The power of GRNs has been underutilized in malaria research. The Arboreto library was incorporated into a user-friendly web-based application for malaria researchers (http://malboost.bi.up.ac.za). This application will assist researchers with gaining an in depth understanding of transcriptomic datasets. METHODS: The web application for MALBoost was built in Python-Flask with Redis and Celery workers for queue submission handling, which execute the Arboreto suite algorithms. A submission of 5–50 regulators and total expression set of 5200 genes is permitted. The program runs in a point-and-click web user interface built using Bootstrap4 templates. Post-analysis submission, users are redirected to a status page with run time estimates and ultimately a download button upon completion. Result updates or failure updates will be emailed to the users. RESULTS: A web-based application with an easy-to-use interface is presented with a use case validation of AP2-G and AP2-I. The validation set incorporates cross-referencing with ChIP-seq and transcriptome datasets. For AP2-G, 5 ChIP-seq targets were significantly enriched with seven more targets presenting with strong evidence of validated targets. CONCLUSION: The MALBoost application provides the first tool for easy interfacing and efficiently allows gene regulatory network construction for Plasmodium. Additionally, access is provided to a pre-compiled network for use as reference framework. Validation for sexually committed ring-stage parasite targets of AP2-G, suggests the algorithm was effective in resolving “traditionally” low-level signatures even in bulk RNA datasets. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12936-021-03848-2. |
---|