Cargando…
Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions
The cuticle plays a major role in restricting nonstomatal water transpiration in plants. There is therefore a long-standing interest to understand the structure and function of the plant cuticle. Although many efforts have been devoted, it remains controversial to what degree the various cuticular p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278822/ https://www.ncbi.nlm.nih.gov/pubmed/34276719 http://dx.doi.org/10.3389/fpls.2021.655799 |
_version_ | 1783722339314171904 |
---|---|
author | Chen, Mingjie Zhang, Yi Kong, Xiangrui Du, Zhenghua Zhou, Huiwen Yu, Zhaoxi Qin, Jianheng Chen, Changsong |
author_facet | Chen, Mingjie Zhang, Yi Kong, Xiangrui Du, Zhenghua Zhou, Huiwen Yu, Zhaoxi Qin, Jianheng Chen, Changsong |
author_sort | Chen, Mingjie |
collection | PubMed |
description | The cuticle plays a major role in restricting nonstomatal water transpiration in plants. There is therefore a long-standing interest to understand the structure and function of the plant cuticle. Although many efforts have been devoted, it remains controversial to what degree the various cuticular parameters contribute to the water transpiration barrier. In this study, eight tea germplasms were grown under normal conditions; cuticle thickness, wax coverage, and compositions were analyzed from the epicuticular waxes and the intracuticular waxes of both leaf surfaces. The cuticular transpiration rates were measured from the individual leaf surface as well as the intracuticular wax layer. Epicuticular wax resistances were also calculated from both leaf surfaces. The correlation analysis between the cuticular transpiration rates (or resistances) and various cuticle parameters was conducted. We found that the abaxial cuticular transpiration rates accounted for 64–78% of total cuticular transpiration and were the dominant factor in the variations for the total cuticular transpiration. On the adaxial surface, the major cuticular transpiration barrier was located on the intracuticular waxes; however, on the abaxial surface, the major cuticular transpiration barrier was located on the epicuticular waxes. Cuticle thickness was not a factor affecting cuticular transpiration. However, the abaxial epicuticular wax coverage was found to be significantly and positively correlated with the abaxial epicuticular resistance. Correlation analysis suggested that the very-long-chain aliphatic compounds and glycol esters play major roles in the cuticular transpiration barrier in tea trees grown under normal conditions. Our results provided novel insights about the complex structure–functional relationships in the tea cuticle. |
format | Online Article Text |
id | pubmed-8278822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82788222021-07-15 Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions Chen, Mingjie Zhang, Yi Kong, Xiangrui Du, Zhenghua Zhou, Huiwen Yu, Zhaoxi Qin, Jianheng Chen, Changsong Front Plant Sci Plant Science The cuticle plays a major role in restricting nonstomatal water transpiration in plants. There is therefore a long-standing interest to understand the structure and function of the plant cuticle. Although many efforts have been devoted, it remains controversial to what degree the various cuticular parameters contribute to the water transpiration barrier. In this study, eight tea germplasms were grown under normal conditions; cuticle thickness, wax coverage, and compositions were analyzed from the epicuticular waxes and the intracuticular waxes of both leaf surfaces. The cuticular transpiration rates were measured from the individual leaf surface as well as the intracuticular wax layer. Epicuticular wax resistances were also calculated from both leaf surfaces. The correlation analysis between the cuticular transpiration rates (or resistances) and various cuticle parameters was conducted. We found that the abaxial cuticular transpiration rates accounted for 64–78% of total cuticular transpiration and were the dominant factor in the variations for the total cuticular transpiration. On the adaxial surface, the major cuticular transpiration barrier was located on the intracuticular waxes; however, on the abaxial surface, the major cuticular transpiration barrier was located on the epicuticular waxes. Cuticle thickness was not a factor affecting cuticular transpiration. However, the abaxial epicuticular wax coverage was found to be significantly and positively correlated with the abaxial epicuticular resistance. Correlation analysis suggested that the very-long-chain aliphatic compounds and glycol esters play major roles in the cuticular transpiration barrier in tea trees grown under normal conditions. Our results provided novel insights about the complex structure–functional relationships in the tea cuticle. Frontiers Media S.A. 2021-06-30 /pmc/articles/PMC8278822/ /pubmed/34276719 http://dx.doi.org/10.3389/fpls.2021.655799 Text en Copyright © 2021 Chen, Zhang, Kong, Du, Zhou, Yu, Qin and Chen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Chen, Mingjie Zhang, Yi Kong, Xiangrui Du, Zhenghua Zhou, Huiwen Yu, Zhaoxi Qin, Jianheng Chen, Changsong Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions |
title | Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions |
title_full | Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions |
title_fullStr | Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions |
title_full_unstemmed | Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions |
title_short | Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions |
title_sort | leaf cuticular transpiration barrier organization in tea tree under normal growth conditions |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278822/ https://www.ncbi.nlm.nih.gov/pubmed/34276719 http://dx.doi.org/10.3389/fpls.2021.655799 |
work_keys_str_mv | AT chenmingjie leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT zhangyi leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT kongxiangrui leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT duzhenghua leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT zhouhuiwen leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT yuzhaoxi leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT qinjianheng leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions AT chenchangsong leafcuticulartranspirationbarrierorganizationinteatreeundernormalgrowthconditions |