Cargando…

Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS)

Inadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quantitative phase imaging...

Descripción completa

Detalles Bibliográficos
Autores principales: Fanous, Michael, Shi, Chuqiao, Caputo, Megan P., Rund, Laurie A., Johnson, Rodney W., Das, Tapas, Kuchan, Matthew J., Sobh, Nahil, Popescu, Gabriel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278825/
https://www.ncbi.nlm.nih.gov/pubmed/34291159
http://dx.doi.org/10.1063/5.0050889
Descripción
Sumario:Inadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quantitative phase imaging (QPI) technique, to correlate the dry mass content of myelin in piglet brain tissue with dietary changes and gestational size. We combined SLIM micrographs with an artificial intelligence (AI) classifying model that allows us to discern subtle disparities in myelin distributions with high accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting molecular specificity has recently been introduced by our laboratory as phase imaging with computational specificity. Training on 8000 SLIM images of piglet brain tissue with the 71-layer transfer learning model Xception, we created a two-parameter classification to differentiate gestational size and diet type with an accuracy of 82% and 80%, respectively. To our knowledge, this type of evaluation is impossible to perform by an expert pathologist or other techniques.