Cargando…
Provenance-and machine learning-based recommendation of parameter values in scientific workflows
Scientific Workflows (SWfs) have revolutionized how scientists in various domains of science conduct their experiments. The management of SWfs is performed by complex tools that provide support for workflow composition, monitoring, execution, capturing, and storage of the data generated during execu...
Autores principales: | Silva Junior, Daniel, Pacitti, Esther, Paes, Aline, de Oliveira, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279147/ https://www.ncbi.nlm.nih.gov/pubmed/34307859 http://dx.doi.org/10.7717/peerj-cs.606 |
Ejemplares similares
-
A systematic review on literature-based discovery workflow
por: Thilakaratne, Menasha, et al.
Publicado: (2019) -
A serendipity-biased Deepwalk for collaborators recommendation
por: Xu, Zhenzhen, et al.
Publicado: (2019) -
An intelligent film recommender system based on emotional analysis
por: Xiong, Wenzuixiong, et al.
Publicado: (2023) -
Influence of tweets and diversification on serendipitous research paper recommender systems
por: Nishioka, Chifumi, et al.
Publicado: (2020) -
Data mining-based recommendation system using social networks—an analytical study
por: Ajmal, Sahar, et al.
Publicado: (2023)