Cargando…
Predicting self-intercepted medication ordering errors using machine learning
Current approaches to understanding medication ordering errors rely on relatively small manually captured error samples. These approaches are resource-intensive, do not scale for computerized provider order entry (CPOE) systems, and are likely to miss important risk factors associated with medicatio...
Autores principales: | King, Christopher Ryan, Abraham, Joanna, Fritz, Bradley A., Cui, Zhicheng, Galanter, William, Chen, Yixin, Kannampallil, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279397/ https://www.ncbi.nlm.nih.gov/pubmed/34260662 http://dx.doi.org/10.1371/journal.pone.0254358 |
Ejemplares similares
-
Indication Alerts Intercept Drug Name Confusion Errors during Computerized Entry of Medication Orders
por: Galanter, William L., et al.
Publicado: (2014) -
Informed cover measurement: Guidelines and error for point‐intercept approaches
por: Drezner, Taly Dawn, et al.
Publicado: (2021) -
Motion-in-depth effects on interceptive timing errors in an immersive environment
por: López-Moliner, Joan, et al.
Publicado: (2021) -
Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications
por: Xue, Bing, et al.
Publicado: (2021) -
Protocol for the perioperative outcome risk assessment with computer learning enhancement (Periop ORACLE) randomized study
por: Fritz, Bradley, et al.
Publicado: (2022)