Cargando…

The mechanism of gap creation by a multifunctional nuclease during base excision repair

During base excision repair, a transient single-stranded DNA (ssDNA) gap is produced at the apurinic/apyrimidinic (AP) site. Exonuclease III, capable of performing both AP endonuclease and exonuclease activity, are responsible for gap creation in bacteria. We used single-molecule fluorescence resona...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoo, Jungmin, Lee, Donghun, Im, Hyeryeon, Ji, Sangmi, Oh, Sanghoon, Shin, Minsang, Park, Daeho, Lee, Gwangrog
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279506/
https://www.ncbi.nlm.nih.gov/pubmed/34261654
http://dx.doi.org/10.1126/sciadv.abg0076
Descripción
Sumario:During base excision repair, a transient single-stranded DNA (ssDNA) gap is produced at the apurinic/apyrimidinic (AP) site. Exonuclease III, capable of performing both AP endonuclease and exonuclease activity, are responsible for gap creation in bacteria. We used single-molecule fluorescence resonance energy transfer to examine the mechanism of gap creation. We found an AP site anchor-based mechanism by which the intrinsically distributive enzyme binds strongly to the AP site and becomes a processive enzyme, rapidly creating a gap and an associated transient ssDNA loop. The gap size is determined by the rigidity of the ssDNA loop and the duplex stability of the DNA and is limited to a few nucleotides to maintain genomic stability. When the 3′ end is released from the AP endonuclease, polymerase I quickly initiates DNA synthesis and fills the gap. Our work provides previously unidentified insights into how a signal of DNA damage changes the enzymatic functions.