Cargando…
Bandgap Engineering in the Configurational Space of Solid Solutions via Machine Learning: (Mg,Zn)O Case Study
[Image: see text] Computer simulations of alloys’ properties often require calculations in a large space of configurations in a supercell of the crystal structure. A common approach is to map density functional theory results into a simplified interaction model using so-called cluster expansions, wh...
Autores principales: | Midgley, Scott D., Hamad, Said, Butler, Keith T., Grau-Crespo, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279729/ https://www.ncbi.nlm.nih.gov/pubmed/34032426 http://dx.doi.org/10.1021/acs.jpclett.1c01031 |
Ejemplares similares
-
Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films
por: Li, D. L., et al.
Publicado: (2014) -
Laser-Sintered Mg-Zn Supersaturated Solid Solution with High Corrosion Resistance
por: Yang, Youwen, et al.
Publicado: (2021) -
Deep elastic strain engineering of bandgap through machine learning
por: Shi, Zhe, et al.
Publicado: (2019) -
Fluorine doping: a feasible solution to enhancing the conductivity of high-resistance wide bandgap Mg(0.51)Zn(0.49)O active components
por: Liu, Lishu, et al.
Publicado: (2015) -
Computational engineering of low bandgap copolymers
por: Wykes, Michael, et al.
Publicado: (2013)