Cargando…
Breaking the Coupled Cluster Barrier for Machine-Learned Potentials of Large Molecules: The Case of 15-Atom Acetylacetone
[Image: see text] Machine-learned potential energy surfaces (PESs) for molecules with more than 10 atoms are typically forced to use lower-level electronic structure methods such as density functional theory (DFT) and second-order Møller–Plesset perturbation theory (MP2). While these are efficient a...
Autores principales: | Qu, Chen, Houston, Paul L., Conte, Riccardo, Nandi, Apurba, Bowman, Joel M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279733/ https://www.ncbi.nlm.nih.gov/pubmed/34006096 http://dx.doi.org/10.1021/acs.jpclett.1c01142 |
Ejemplares similares
-
Quantum Calculations
on a New CCSD(T) Machine-Learned
Potential Energy Surface Reveal the Leaky Nature of Gas-Phase Trans and Gauche Ethanol Conformers
por: Nandi, Apurba, et al.
Publicado: (2022) -
A Status Report
on “Gold Standard” Machine-Learned
Potentials for Water
por: Yu, Qi, et al.
Publicado: (2023) -
Semiclassical and VSCF/VCI
Calculations of the Vibrational
Energies of trans- and gauche-Ethanol
Using a CCSD(T) Potential Energy Surface
por: Conte, Riccardo, et al.
Publicado: (2022) -
Efficient Generation of Permutationally Invariant
Potential Energy Surfaces for Large Molecules
por: Conte, Riccardo, et al.
Publicado: (2020) -
Isotropic
Atomic Layer Etching of ZnO Using Acetylacetone
and O(2) Plasma
por: Mameli, A., et al.
Publicado: (2018)