Cargando…
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, we demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard counterp...
Autores principales: | Han, Tianyu, Nebelung, Sven, Pedersoli, Federico, Zimmermann, Markus, Schulze-Hagen, Maximilian, Ho, Michael, Haarburger, Christoph, Kiessling, Fabian, Kuhl, Christiane, Schulz, Volkmar, Truhn, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280105/ https://www.ncbi.nlm.nih.gov/pubmed/34262044 http://dx.doi.org/10.1038/s41467-021-24464-3 |
Ejemplares similares
-
Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction
por: Müller-Franzes, Gustav, et al.
Publicado: (2022) -
Breaking medical data sharing boundaries by using synthesized radiographs
por: Han, Tianyu, et al.
Publicado: (2020) -
A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
por: Müller-Franzes, Gustav, et al.
Publicado: (2023) -
Denoising diffusion probabilistic models for 3D medical image generation
por: Khader, Firas, et al.
Publicado: (2023) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022)