Cargando…
Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging
As machine learning research in the field of cardiovascular imaging continues to grow, obtaining reliable model performance estimates is critical to develop reliable baselines and compare different algorithms. While the machine learning community has generally accepted methods such as k-fold stratif...
Autores principales: | Singh, Vikash, Pencina, Michael, Einstein, Andrew J., Liang, Joanna X., Berman, Daniel S., Slomka, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280147/ https://www.ncbi.nlm.nih.gov/pubmed/34262098 http://dx.doi.org/10.1038/s41598-021-93651-5 |
Ejemplares similares
-
New Imaging Protocols for New Single Photon Emission CT Technologies
por: Slomka, Piotr J., et al.
Publicado: (2010) -
Supine acceptance of a conventional imaging position may make you less prone to success
por: Germano, Guido, et al.
Publicado: (2009) -
Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT
por: Išgum, Ivana, et al.
Publicado: (2017) -
Participant uptake of the fecal immunochemical test decreases with the two-sample regimen compared with one-sample FIT
por: Mosen, David M., et al.
Publicado: (2014) -
Prediction of cardiovascular outcomes with machine learning techniques: application to the Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL) study
por: Chen, Tian, et al.
Publicado: (2019)