Cargando…
Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network
Endometrial cancer (EC) is the most common gynecological tumor in developed countries, and preoperative risk stratification is essential for personalized medicine. There have been several radiomics studies for noninvasive risk stratification of EC using MRI. Although tumor segmentation is usually ne...
Autores principales: | Kurata, Yasuhisa, Nishio, Mizuho, Moribata, Yusaku, Kido, Aki, Himoto, Yuki, Otani, Satoshi, Fujimoto, Koji, Yakami, Masahiro, Minamiguchi, Sachiko, Mandai, Masaki, Nakamoto, Yuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280152/ https://www.ncbi.nlm.nih.gov/pubmed/34262088 http://dx.doi.org/10.1038/s41598-021-93792-7 |
Ejemplares similares
-
Automatic segmentation of bladder cancer on MRI using a convolutional neural network and reproducibility of radiomics features: a two-center study
por: Moribata, Yusaku, et al.
Publicado: (2023) -
Differentiation of uterine low-grade endometrial stromal sarcoma from rare leiomyoma variants by magnetic resonance imaging
por: Himoto, Yuki, et al.
Publicado: (2021) -
Diagnostic Value of DCE-MRI for Differentiating Malignant Adnexal Masses Compared with Contrast-enhanced-T1WI
por: Otani, Satoshi, et al.
Publicado: (2021) -
MRI in the Diagnosis of Endometriosis and Related Diseases
por: Kido, Aki, et al.
Publicado: (2022) -
Differentiation of Seromucinous Borderline Tumor from Serous Borderline Tumor on MR Imaging
por: Kurata, Yasuhisa, et al.
Publicado: (2017)