Cargando…
Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients
Accurate prediction of blood glucose variations in type 2 diabetes (T2D) will facilitate better glycemic control and decrease the occurrence of hypoglycemic episodes as well as the morbidity and mortality associated with T2D, hence increasing the quality of life of patients. Owing to the complexity...
Autores principales: | Deng, Yixiang, Lu, Lu, Aponte, Laura, Angelidi, Angeliki M., Novak, Vera, Karniadakis, George Em, Mantzoros, Christos S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280162/ https://www.ncbi.nlm.nih.gov/pubmed/34262114 http://dx.doi.org/10.1038/s41746-021-00480-x |
Ejemplares similares
-
Quantifying Fibrinogen-Dependent Aggregation of Red Blood Cells in Type 2 Diabetes Mellitus
por: Deng, Yixiang, et al.
Publicado: (2020) -
Commentary: COVID-19 and diabetes mellitus: What we know, how our patients should be treated now, and what should happen next
por: Angelidi, Angeliki M., et al.
Publicado: (2020) -
Systems biology informed deep learning for inferring parameters and hidden dynamics
por: Yazdani, Alireza, et al.
Publicado: (2020) -
Mediterranean diet as a nutritional approach for COVID-19
por: Angelidi, Angeliki M., et al.
Publicado: (2021) -
Multiphysics and multiscale modeling of microthrombosis in COVID-19
por: Li, He, et al.
Publicado: (2022)