Cargando…

Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion

In inertial confinement fusion, quantitative and high-spatial resolution ([Formula: see text] m) measurements of the X-rays self-emitted by the hotspot are critical for studying the physical processes of the implosion stagnation stage. Herein, the 8 ± 0.39-keV monochromatic X-ray distribution from t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Kuan, Wu, Junfeng, Dong, Jianjun, Li, Yaran, Huang, Tianxuan, Zhao, Hang, Liu, Yaoyuan, Cao, Zhurong, Zhang, Jiyan, Mu, Baozhong, Yan, Ji, Jiang, Wei, Pu, Yudong, Li, Yulong, Peng, Xiaoshi, Xu, Tao, Yang, Jiamin, Lan, Ke, Ding, Yongkun, Jiang, Shaoen, Wang, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280192/
https://www.ncbi.nlm.nih.gov/pubmed/34262058
http://dx.doi.org/10.1038/s41598-021-93482-4
_version_ 1783722600521793536
author Ren, Kuan
Wu, Junfeng
Dong, Jianjun
Li, Yaran
Huang, Tianxuan
Zhao, Hang
Liu, Yaoyuan
Cao, Zhurong
Zhang, Jiyan
Mu, Baozhong
Yan, Ji
Jiang, Wei
Pu, Yudong
Li, Yulong
Peng, Xiaoshi
Xu, Tao
Yang, Jiamin
Lan, Ke
Ding, Yongkun
Jiang, Shaoen
Wang, Feng
author_facet Ren, Kuan
Wu, Junfeng
Dong, Jianjun
Li, Yaran
Huang, Tianxuan
Zhao, Hang
Liu, Yaoyuan
Cao, Zhurong
Zhang, Jiyan
Mu, Baozhong
Yan, Ji
Jiang, Wei
Pu, Yudong
Li, Yulong
Peng, Xiaoshi
Xu, Tao
Yang, Jiamin
Lan, Ke
Ding, Yongkun
Jiang, Shaoen
Wang, Feng
author_sort Ren, Kuan
collection PubMed
description In inertial confinement fusion, quantitative and high-spatial resolution ([Formula: see text] m) measurements of the X-rays self-emitted by the hotspot are critical for studying the physical processes of the implosion stagnation stage. Herein, the 8 ± 0.39-keV monochromatic X-ray distribution from the entire hotspot is quantitatively observed in 5-[Formula: see text] m spatial resolution using a Kirkpatrick–Baez microscope, with impacts from the responses of the diagnosis system removed, for the first time, in implosion experiments at the 100 kJ laser facility in China. Two-dimensional calculations along with 2.5% P2 drive asymmetry and 0.3 ablator self-emission are congruent with the experimental results, especially for the photon number distribution, hotspot profile, and neutron yield. Theoretical calculations enabled a better understanding of the experimental results. Furthermore, the origins of the 17.81% contour profile of the deuterium-deuterium hotspot and the accurate Gaussian source approximation of the core emission area in the implosion capsule are clarified in detail. This work is significant for quantitatively exploring the physical conditions of the hotspot and updating the theoretical model of capsule implosion.
format Online
Article
Text
id pubmed-8280192
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82801922021-07-15 Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion Ren, Kuan Wu, Junfeng Dong, Jianjun Li, Yaran Huang, Tianxuan Zhao, Hang Liu, Yaoyuan Cao, Zhurong Zhang, Jiyan Mu, Baozhong Yan, Ji Jiang, Wei Pu, Yudong Li, Yulong Peng, Xiaoshi Xu, Tao Yang, Jiamin Lan, Ke Ding, Yongkun Jiang, Shaoen Wang, Feng Sci Rep Article In inertial confinement fusion, quantitative and high-spatial resolution ([Formula: see text] m) measurements of the X-rays self-emitted by the hotspot are critical for studying the physical processes of the implosion stagnation stage. Herein, the 8 ± 0.39-keV monochromatic X-ray distribution from the entire hotspot is quantitatively observed in 5-[Formula: see text] m spatial resolution using a Kirkpatrick–Baez microscope, with impacts from the responses of the diagnosis system removed, for the first time, in implosion experiments at the 100 kJ laser facility in China. Two-dimensional calculations along with 2.5% P2 drive asymmetry and 0.3 ablator self-emission are congruent with the experimental results, especially for the photon number distribution, hotspot profile, and neutron yield. Theoretical calculations enabled a better understanding of the experimental results. Furthermore, the origins of the 17.81% contour profile of the deuterium-deuterium hotspot and the accurate Gaussian source approximation of the core emission area in the implosion capsule are clarified in detail. This work is significant for quantitatively exploring the physical conditions of the hotspot and updating the theoretical model of capsule implosion. Nature Publishing Group UK 2021-07-14 /pmc/articles/PMC8280192/ /pubmed/34262058 http://dx.doi.org/10.1038/s41598-021-93482-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ren, Kuan
Wu, Junfeng
Dong, Jianjun
Li, Yaran
Huang, Tianxuan
Zhao, Hang
Liu, Yaoyuan
Cao, Zhurong
Zhang, Jiyan
Mu, Baozhong
Yan, Ji
Jiang, Wei
Pu, Yudong
Li, Yulong
Peng, Xiaoshi
Xu, Tao
Yang, Jiamin
Lan, Ke
Ding, Yongkun
Jiang, Shaoen
Wang, Feng
Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
title Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
title_full Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
title_fullStr Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
title_full_unstemmed Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
title_short Quantitative observation of monochromatic X-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
title_sort quantitative observation of monochromatic x-rays emitted from implosion hotspot in high spatial resolution in inertial confinement fusion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280192/
https://www.ncbi.nlm.nih.gov/pubmed/34262058
http://dx.doi.org/10.1038/s41598-021-93482-4
work_keys_str_mv AT renkuan quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT wujunfeng quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT dongjianjun quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT liyaran quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT huangtianxuan quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT zhaohang quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT liuyaoyuan quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT caozhurong quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT zhangjiyan quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT mubaozhong quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT yanji quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT jiangwei quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT puyudong quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT liyulong quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT pengxiaoshi quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT xutao quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT yangjiamin quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT lanke quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT dingyongkun quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT jiangshaoen quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion
AT wangfeng quantitativeobservationofmonochromaticxraysemittedfromimplosionhotspotinhighspatialresolutionininertialconfinementfusion