Cargando…
Local bi-fidelity field approximation with Knowledge Based Neural Networks for Computational Fluid Dynamics
This work presents a machine learning based method for bi-fidelity modelling. The method, a Knowledge Based Neural Network (KBaNN), performs a local, additive correction to the outputs of a coarse computational model and can be used to emulate either experimental data or the output of a more accurat...
Autores principales: | Pepper, Nick, Gaymann, Audrey, Sharma, Sanjiv, Montomoli, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280202/ https://www.ncbi.nlm.nih.gov/pubmed/34262057 http://dx.doi.org/10.1038/s41598-021-93280-y |
Ejemplares similares
-
Deep Neural Network and Monte Carlo Tree Search applied to Fluid-Structure Topology Optimization
por: Gaymann, Audrey, et al.
Publicado: (2019) -
Automating approximate Bayesian computation by local linear regression
por: Thornton, Kevin R
Publicado: (2009) -
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
por: Riedler, Martin G, et al.
Publicado: (2013) -
Stochastic approximations of higher-molecular by bi-molecular reactions
por: Plesa, Tomislav
Publicado: (2023) -
Approximation and Computation
por: Gautschi, Walter, et al.
Publicado: (2011)