Cargando…
Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases
Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological interpretation using diverse MRI modalities. In the current study, the overarching goal is to demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be diffe...
Autores principales: | Samani, Zahra Riahi, Parker, Drew, Wolf, Ronald, Hodges, Wes, Brem, Steven, Verma, Ragini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280204/ https://www.ncbi.nlm.nih.gov/pubmed/34262079 http://dx.doi.org/10.1038/s41598-021-93804-6 |
Ejemplares similares
-
Artificial intelligence-based locoregional markers of brain peritumoral microenvironment
por: Riahi Samani, Zahra, et al.
Publicado: (2023) -
Freewater estimatoR using iNtErpolated iniTialization (FERNET): Characterizing peritumoral edema using clinically feasible diffusion MRI data
por: Parker, Drew, et al.
Publicado: (2020) -
CrOssing fiber Modeling in the Peritumoral Area using dMRI (COMPARI)
por: Golkar, Ehsan, et al.
Publicado: (2023) -
Current Knowledge about the Peritumoral Microenvironment in Glioblastoma
por: Trevisi, Gianluca, et al.
Publicado: (2023) -
QC-Automator: Deep Learning-Based Automated Quality Control for Diffusion MR Images
por: Samani, Zahra Riahi, et al.
Publicado: (2020)