Cargando…
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
Mortality remains an exceptional burden of extremely preterm birth. Current clinical mortality prediction scores are calculated using a few static variable measurements, such as gestational age, birth weight, temperature, and blood pressure at admission. While these models do provide some insight, n...
Autores principales: | Feng, Jiarui, Lee, Jennifer, Vesoulis, Zachary A., Li, Fuhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280207/ https://www.ncbi.nlm.nih.gov/pubmed/34262112 http://dx.doi.org/10.1038/s41746-021-00479-4 |
Ejemplares similares
-
Predicting mortality risk for preterm infants using random forest
por: Lee, Jennifer, et al.
Publicado: (2021) -
Vital Sign Metrics of VLBW Infants in Three NICUs: Implications for Predictive Algorithms
por: Zimmet, Amanda M., et al.
Publicado: (2021) -
Deep learning for deterioration prediction of COVID-19 patients based on time-series of three vital signs
por: Mehrdad, Sarmad, et al.
Publicado: (2023) -
Racial discrepancy in pulse oximeter accuracy in preterm infants
por: Vesoulis, Zachary, et al.
Publicado: (2021) -
Impact of Physical Contact on Preterm Infants’ Vital Sign Response to Live Music Therapy
por: Kobus, Susann, et al.
Publicado: (2022)