Cargando…

Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model

OBJECTIVES: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. METHODS: We used data from the SEMI-COVID-19 Registry, a cohort of conse...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Lacalzada, Miguel, Viteri-Noël, Adrián, Manzano, Luis, Fabregate, Martin, Rubio-Rivas, Manuel, Luis García, Sara, Arnalich-Fernández, Francisco, Beato-Pérez, José Luis, Vargas-Núñez, Juan Antonio, Calvo-Manuel, Elpidio, Espiño-Álvarez, Alexia Constanza, Freire-Castro, Santiago J., Loureiro-Amigo, Jose, Pesqueira Fontan, Paula Maria, Pina, Adela, Álvarez Suárez, Ana María, Silva-Asiain, Andrea, García-López, Beatriz, Luque del Pino, Jairo, Sanz-Cánovas, Jaime, Chazarra-Pérez, Paloma, García-García, Gema María, Núñez-Cortés, Jesús Millán, Casas-Rojo, José Manuel, Gómez-Huelgas, Ricardo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280376/
https://www.ncbi.nlm.nih.gov/pubmed/34274525
http://dx.doi.org/10.1016/j.cmi.2021.07.006
_version_ 1783722634875240448
author Martínez-Lacalzada, Miguel
Viteri-Noël, Adrián
Manzano, Luis
Fabregate, Martin
Rubio-Rivas, Manuel
Luis García, Sara
Arnalich-Fernández, Francisco
Beato-Pérez, José Luis
Vargas-Núñez, Juan Antonio
Calvo-Manuel, Elpidio
Espiño-Álvarez, Alexia Constanza
Freire-Castro, Santiago J.
Loureiro-Amigo, Jose
Pesqueira Fontan, Paula Maria
Pina, Adela
Álvarez Suárez, Ana María
Silva-Asiain, Andrea
García-López, Beatriz
Luque del Pino, Jairo
Sanz-Cánovas, Jaime
Chazarra-Pérez, Paloma
García-García, Gema María
Núñez-Cortés, Jesús Millán
Casas-Rojo, José Manuel
Gómez-Huelgas, Ricardo
author_facet Martínez-Lacalzada, Miguel
Viteri-Noël, Adrián
Manzano, Luis
Fabregate, Martin
Rubio-Rivas, Manuel
Luis García, Sara
Arnalich-Fernández, Francisco
Beato-Pérez, José Luis
Vargas-Núñez, Juan Antonio
Calvo-Manuel, Elpidio
Espiño-Álvarez, Alexia Constanza
Freire-Castro, Santiago J.
Loureiro-Amigo, Jose
Pesqueira Fontan, Paula Maria
Pina, Adela
Álvarez Suárez, Ana María
Silva-Asiain, Andrea
García-López, Beatriz
Luque del Pino, Jairo
Sanz-Cánovas, Jaime
Chazarra-Pérez, Paloma
García-García, Gema María
Núñez-Cortés, Jesús Millán
Casas-Rojo, José Manuel
Gómez-Huelgas, Ricardo
author_sort Martínez-Lacalzada, Miguel
collection PubMed
description OBJECTIVES: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. METHODS: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort, tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive care unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation were screened using least absolute shrinkage and selection operator, and logistic regression was used to construct the predictive model. RESULTS: There were 10 433 patients, 7850 in the development cohort (primary outcome 25.1%, 1967/7850) and 2583 in the validation cohort (outcome 27.0%, 698/2583). The PRIORITY model included: age, dependency, cardiovascular disease, chronic kidney disease, dyspnoea, tachypnoea, confusion, systolic blood pressure, and SpO(2) ≤93% or oxygen requirement. The model showed high discrimination for critical illness in both the development (C-statistic 0.823; 95% confidence interval (CI) 0.813, 0.834) and validation (C-statistic 0.794; 95%CI 0.775, 0.813) cohorts. A freely available web-based calculator was developed based on this model (https://www.evidencio.com/models/show/2344). CONCLUSIONS: The PRIORITY model, based on easily obtained clinical information, had good discrimination and generalizability for identifying COVID-19 patients at risk of critical outcomes.
format Online
Article
Text
id pubmed-8280376
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases.
record_format MEDLINE/PubMed
spelling pubmed-82803762021-07-20 Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model Martínez-Lacalzada, Miguel Viteri-Noël, Adrián Manzano, Luis Fabregate, Martin Rubio-Rivas, Manuel Luis García, Sara Arnalich-Fernández, Francisco Beato-Pérez, José Luis Vargas-Núñez, Juan Antonio Calvo-Manuel, Elpidio Espiño-Álvarez, Alexia Constanza Freire-Castro, Santiago J. Loureiro-Amigo, Jose Pesqueira Fontan, Paula Maria Pina, Adela Álvarez Suárez, Ana María Silva-Asiain, Andrea García-López, Beatriz Luque del Pino, Jairo Sanz-Cánovas, Jaime Chazarra-Pérez, Paloma García-García, Gema María Núñez-Cortés, Jesús Millán Casas-Rojo, José Manuel Gómez-Huelgas, Ricardo Clin Microbiol Infect Original Article OBJECTIVES: We aimed to develop and validate a prediction model, based on clinical history and examination findings on initial diagnosis of coronavirus disease 2019 (COVID-19), to identify patients at risk of critical outcomes. METHODS: We used data from the SEMI-COVID-19 Registry, a cohort of consecutive patients hospitalized for COVID-19 from 132 centres in Spain (23rd March to 21st May 2020). For the development cohort, tertiary referral hospitals were selected, while the validation cohort included smaller hospitals. The primary outcome was a composite of in-hospital death, mechanical ventilation, or admission to intensive care unit. Clinical signs and symptoms, demographics, and medical history ascertained at presentation were screened using least absolute shrinkage and selection operator, and logistic regression was used to construct the predictive model. RESULTS: There were 10 433 patients, 7850 in the development cohort (primary outcome 25.1%, 1967/7850) and 2583 in the validation cohort (outcome 27.0%, 698/2583). The PRIORITY model included: age, dependency, cardiovascular disease, chronic kidney disease, dyspnoea, tachypnoea, confusion, systolic blood pressure, and SpO(2) ≤93% or oxygen requirement. The model showed high discrimination for critical illness in both the development (C-statistic 0.823; 95% confidence interval (CI) 0.813, 0.834) and validation (C-statistic 0.794; 95%CI 0.775, 0.813) cohorts. A freely available web-based calculator was developed based on this model (https://www.evidencio.com/models/show/2344). CONCLUSIONS: The PRIORITY model, based on easily obtained clinical information, had good discrimination and generalizability for identifying COVID-19 patients at risk of critical outcomes. The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. 2021-12 2021-07-15 /pmc/articles/PMC8280376/ /pubmed/34274525 http://dx.doi.org/10.1016/j.cmi.2021.07.006 Text en © 2021 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Original Article
Martínez-Lacalzada, Miguel
Viteri-Noël, Adrián
Manzano, Luis
Fabregate, Martin
Rubio-Rivas, Manuel
Luis García, Sara
Arnalich-Fernández, Francisco
Beato-Pérez, José Luis
Vargas-Núñez, Juan Antonio
Calvo-Manuel, Elpidio
Espiño-Álvarez, Alexia Constanza
Freire-Castro, Santiago J.
Loureiro-Amigo, Jose
Pesqueira Fontan, Paula Maria
Pina, Adela
Álvarez Suárez, Ana María
Silva-Asiain, Andrea
García-López, Beatriz
Luque del Pino, Jairo
Sanz-Cánovas, Jaime
Chazarra-Pérez, Paloma
García-García, Gema María
Núñez-Cortés, Jesús Millán
Casas-Rojo, José Manuel
Gómez-Huelgas, Ricardo
Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
title Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
title_full Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
title_fullStr Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
title_full_unstemmed Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
title_short Predicting critical illness on initial diagnosis of COVID-19 based on easily obtained clinical variables: development and validation of the PRIORITY model
title_sort predicting critical illness on initial diagnosis of covid-19 based on easily obtained clinical variables: development and validation of the priority model
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280376/
https://www.ncbi.nlm.nih.gov/pubmed/34274525
http://dx.doi.org/10.1016/j.cmi.2021.07.006
work_keys_str_mv AT martinezlacalzadamiguel predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT viterinoeladrian predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT manzanoluis predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT fabregatemartin predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT rubiorivasmanuel predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT luisgarciasara predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT arnalichfernandezfrancisco predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT beatoperezjoseluis predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT vargasnunezjuanantonio predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT calvomanuelelpidio predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT espinoalvarezalexiaconstanza predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT freirecastrosantiagoj predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT loureiroamigojose predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT pesqueirafontanpaulamaria predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT pinaadela predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT alvarezsuarezanamaria predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT silvaasiainandrea predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT garcialopezbeatriz predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT luquedelpinojairo predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT sanzcanovasjaime predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT chazarraperezpaloma predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT garciagarciagemamaria predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT nunezcortesjesusmillan predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT casasrojojosemanuel predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT gomezhuelgasricardo predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel
AT predictingcriticalillnessoninitialdiagnosisofcovid19basedoneasilyobtainedclinicalvariablesdevelopmentandvalidationoftheprioritymodel