Cargando…
Three-stage segmentation of lung region from CT images using deep neural networks
BACKGROUND: Lung region segmentation is an important stage of automated image-based approaches for the diagnosis of respiratory diseases. Manual methods executed by experts are considered the gold standard, but it is time consuming and the accuracy is dependent on radiologists’ experience. Automated...
Autores principales: | Osadebey, Michael, Andersen, Hilde K., Waaler, Dag, Fossaa, Kristian, Martinsen, Anne C. T., Pedersen, Marius |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280386/ https://www.ncbi.nlm.nih.gov/pubmed/34266391 http://dx.doi.org/10.1186/s12880-021-00640-1 |
Ejemplares similares
-
Image texture and radiation dose properties in CT
por: Mozejko, Dawid, et al.
Publicado: (2016) -
Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality
por: Østerås, Bjørn Helge, et al.
Publicado: (2016) -
CT image quality over time: comparison of image quality for six different CT scanners over a six‐year period
por: Roa, Ana Maria A., et al.
Publicado: (2015) -
Image quality with iterative reconstruction techniques in CT of the lungs—A phantom study
por: Andersen, Hilde Kjernlie, et al.
Publicado: (2018) -
100 days with scans of the same Catphan phantom on the same CT scanner
por: Husby, Ellen, et al.
Publicado: (2017)