Cargando…

Oxidative MLD of Conductive PEDOT Thin Films with EDOT and ReCl(5) as Precursors

[Image: see text] Because of its high conductivity and intrinsic stability, poly(3,4-ethylenedioxythiophene (PEDOT) has gained great attention both in academic research and industry over the years. In this study, we used the oxidative molecular layer deposition (oMLD) technique to deposit PEDOT from...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghafourisaleh, Saba, Popov, Georgi, Leskelä, Markku, Putkonen, Matti, Ritala, Mikko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280639/
https://www.ncbi.nlm.nih.gov/pubmed/34278140
http://dx.doi.org/10.1021/acsomega.1c02029
Descripción
Sumario:[Image: see text] Because of its high conductivity and intrinsic stability, poly(3,4-ethylenedioxythiophene (PEDOT) has gained great attention both in academic research and industry over the years. In this study, we used the oxidative molecular layer deposition (oMLD) technique to deposit PEDOT from 3,4-ethylenedioxythiophene (EDOT) and a new inorganic oxidizing agent, rhenium pentachloride (ReCl(5)). We extensively characterized the properties of the films by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), Raman, and conductivity measurements. The oMLD of polymers is based on the sequential adsorption of the monomer and its oxidation-induced polymerization. However, oMLD has been scarcely used because of the challenge of finding a suitable combination of volatile, reactive, and stable organic monomers applicable at high temperatures. ReCl(5) showed promising properties in oMLD because it has high thermal stability and high oxidizing ability for EDOT. PEDOT films were deposited at temperatures of 125–200 °C. EDS and XPS measurements showed that the as-deposited films contained residues of rhenium and chlorine, which could be removed by rinsing the films with deionized water. The polymer films were transparent in the visible region and showed relatively high electrical conductivities within the 2–2000 S cm(–1) range.