Cargando…

The Preparation of CuInS(2)-ZnS-Glutathione Quantum Dots and Their Application on the Sensitive Determination of Cytochrome c and Imaging of HeLa Cells

[Image: see text] Cytochrome c (Cyt c), one of the most significant proteins acting as an electron transporter, plays an important role during the transferring process of the energy in cells. Apoptosis, one of the major forms of cell death, has been associated with various physiological regularity a...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Xiangyang, Zhang, Yuemei, Wang, Jing, Kong, De-ming, He, Xi-wen, Chen, Langxing, Zhang, Yukui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280654/
https://www.ncbi.nlm.nih.gov/pubmed/34278136
http://dx.doi.org/10.1021/acsomega.1c01983
Descripción
Sumario:[Image: see text] Cytochrome c (Cyt c), one of the most significant proteins acting as an electron transporter, plays an important role during the transferring process of the energy in cells. Apoptosis, one of the major forms of cell death, has been associated with various physiological regularity and pathological mechanisms. It was found that Cyt c can be released from mitochondria to cytosol under different pathological conditions, triggering subsequent cell apoptosis. Herein, we developed a fluorescence nanoprobe based on negatively charged CuInS(2)-ZnS-GSH quantum dots (QDs) for the sensitive determination of Cyt c. CuInS(2)-ZnS-GSH QDs with high photochemical stability and favorable hydrophilicity were prepared by a simple hot reflux method and emit a bright orange-red light. The electron-deficient heme group in Cyt c is affiliated with the electron-rich CuInS(2)-ZnS-GSH QDs through the photo-induced electron transfer process, resulting in a large decrease in fluorescence intensity of QDs. A good linearity for concentration of Cyt c in the range of 0.01–7 μmol L(–1) is obtained, and the detection limit of Cyt c is as low as 1.1 nM. The performance on the detection of Cyt c in spiked human serum and fetal bovine serum samples showed good recoveries from 85.5% to 95.0%. Furthermore, CuInS(2)-ZnS-GSH QDs were applied for the intracellular imaging in HeLa cells showing an extremely lower toxicity and excellent biocompatibility.