Cargando…
Molecular Dynamics Study of Wetting and Adsorption of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid on a Planar Wall
[Image: see text] The wetting of surfaces is strongly influenced by adsorbate layers. Therefore, in this work, sessile drops and their interaction with adsorbate layers on surfaces were investigated by molecular dynamics simulations. Binary fluid model mixtures were considered. The two components of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280723/ https://www.ncbi.nlm.nih.gov/pubmed/34097830 http://dx.doi.org/10.1021/acs.langmuir.1c00780 |
_version_ | 1783722698231250944 |
---|---|
author | Heier, Michaela Stephan, Simon Diewald, Felix Müller, Ralf Langenbach, Kai Hasse, Hans |
author_facet | Heier, Michaela Stephan, Simon Diewald, Felix Müller, Ralf Langenbach, Kai Hasse, Hans |
author_sort | Heier, Michaela |
collection | PubMed |
description | [Image: see text] The wetting of surfaces is strongly influenced by adsorbate layers. Therefore, in this work, sessile drops and their interaction with adsorbate layers on surfaces were investigated by molecular dynamics simulations. Binary fluid model mixtures were considered. The two components of the fluid mixture have the same pure component parameters, but one component has a stronger and the other a weaker affinity to the surface. Furthermore, the unlike interactions between both components were varied. All interactions were described by the Lennard-Jones truncated and shifted potential with a cutoff radius of 2.5σ. The simulations were carried out at constant temperature for mixtures of different compositions. The parameters were varied systematically and chosen such that cases with partial wetting as well as cases with total wetting were obtained and the relation between the varied molecular parameters and the phenomenological behavior was elucidated. Data on the contact angle as well as on the mole fraction and thickness of the adsorbate layer were obtained, accompanied by information on liquid and gaseous bulk phases and the corresponding phase equilibrium. Also, the influence of the adsorbate layer on the wetting was studied: for a sufficiently thick adsorbate layer, the wall’s influence on the wetting vanishes, which is then only determined by the adsorbate layer. |
format | Online Article Text |
id | pubmed-8280723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-82807232021-07-16 Molecular Dynamics Study of Wetting and Adsorption of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid on a Planar Wall Heier, Michaela Stephan, Simon Diewald, Felix Müller, Ralf Langenbach, Kai Hasse, Hans Langmuir [Image: see text] The wetting of surfaces is strongly influenced by adsorbate layers. Therefore, in this work, sessile drops and their interaction with adsorbate layers on surfaces were investigated by molecular dynamics simulations. Binary fluid model mixtures were considered. The two components of the fluid mixture have the same pure component parameters, but one component has a stronger and the other a weaker affinity to the surface. Furthermore, the unlike interactions between both components were varied. All interactions were described by the Lennard-Jones truncated and shifted potential with a cutoff radius of 2.5σ. The simulations were carried out at constant temperature for mixtures of different compositions. The parameters were varied systematically and chosen such that cases with partial wetting as well as cases with total wetting were obtained and the relation between the varied molecular parameters and the phenomenological behavior was elucidated. Data on the contact angle as well as on the mole fraction and thickness of the adsorbate layer were obtained, accompanied by information on liquid and gaseous bulk phases and the corresponding phase equilibrium. Also, the influence of the adsorbate layer on the wetting was studied: for a sufficiently thick adsorbate layer, the wall’s influence on the wetting vanishes, which is then only determined by the adsorbate layer. American Chemical Society 2021-06-07 2021-06-22 /pmc/articles/PMC8280723/ /pubmed/34097830 http://dx.doi.org/10.1021/acs.langmuir.1c00780 Text en © 2021 The Authors. Published by American Chemical Society Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Heier, Michaela Stephan, Simon Diewald, Felix Müller, Ralf Langenbach, Kai Hasse, Hans Molecular Dynamics Study of Wetting and Adsorption of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid on a Planar Wall |
title | Molecular Dynamics
Study of Wetting and Adsorption
of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid
on a Planar Wall |
title_full | Molecular Dynamics
Study of Wetting and Adsorption
of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid
on a Planar Wall |
title_fullStr | Molecular Dynamics
Study of Wetting and Adsorption
of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid
on a Planar Wall |
title_full_unstemmed | Molecular Dynamics
Study of Wetting and Adsorption
of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid
on a Planar Wall |
title_short | Molecular Dynamics
Study of Wetting and Adsorption
of Binary Mixtures of the Lennard-Jones Truncated and Shifted Fluid
on a Planar Wall |
title_sort | molecular dynamics
study of wetting and adsorption
of binary mixtures of the lennard-jones truncated and shifted fluid
on a planar wall |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280723/ https://www.ncbi.nlm.nih.gov/pubmed/34097830 http://dx.doi.org/10.1021/acs.langmuir.1c00780 |
work_keys_str_mv | AT heiermichaela moleculardynamicsstudyofwettingandadsorptionofbinarymixturesofthelennardjonestruncatedandshiftedfluidonaplanarwall AT stephansimon moleculardynamicsstudyofwettingandadsorptionofbinarymixturesofthelennardjonestruncatedandshiftedfluidonaplanarwall AT diewaldfelix moleculardynamicsstudyofwettingandadsorptionofbinarymixturesofthelennardjonestruncatedandshiftedfluidonaplanarwall AT mullerralf moleculardynamicsstudyofwettingandadsorptionofbinarymixturesofthelennardjonestruncatedandshiftedfluidonaplanarwall AT langenbachkai moleculardynamicsstudyofwettingandadsorptionofbinarymixturesofthelennardjonestruncatedandshiftedfluidonaplanarwall AT hassehans moleculardynamicsstudyofwettingandadsorptionofbinarymixturesofthelennardjonestruncatedandshiftedfluidonaplanarwall |