Cargando…

Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection

[Image: see text] Discovery of variant peptides such as a single amino acid variant (SAAV) in shotgun proteomics data is essential for personalized proteomics. Both the resolution of shotgun proteomics methods and the search engines have improved dramatically, allowing for confident identification o...

Descripción completa

Detalles Bibliográficos
Autores principales: Salz, Renee, Bouwmeester, Robbin, Gabriels, Ralf, Degroeve, Sven, Martens, Lennart, Volders, Pieter-Jan, ’t Hoen, Peter A.C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280751/
https://www.ncbi.nlm.nih.gov/pubmed/33998808
http://dx.doi.org/10.1021/acs.jproteome.1c00264
_version_ 1783722705174921216
author Salz, Renee
Bouwmeester, Robbin
Gabriels, Ralf
Degroeve, Sven
Martens, Lennart
Volders, Pieter-Jan
’t Hoen, Peter A.C.
author_facet Salz, Renee
Bouwmeester, Robbin
Gabriels, Ralf
Degroeve, Sven
Martens, Lennart
Volders, Pieter-Jan
’t Hoen, Peter A.C.
author_sort Salz, Renee
collection PubMed
description [Image: see text] Discovery of variant peptides such as a single amino acid variant (SAAV) in shotgun proteomics data is essential for personalized proteomics. Both the resolution of shotgun proteomics methods and the search engines have improved dramatically, allowing for confident identification of SAAV peptides. However, it is not yet known if these methods are truly successful in accurately identifying SAAV peptides without prior genomic information in the search database. We studied this in unprecedented detail by exploiting publicly available long-read RNA sequences and shotgun proteomics data from the gold standard reference cell line NA12878. Searching spectra from this cell line with the state-of-the-art open modification search engine ionbot against carefully curated search databases resulted in 96.7% false-positive SAAVs and an 85% lower true positive rate than searching with peptide search databases that incorporate prior genetic information. While adding genetic variants to the search database remains indispensable for correct peptide identification, inclusion of long-read RNA sequences in the search database contributes only 0.3% new peptide identifications. These findings reveal the differences in SAAV detection that result from various approaches, providing guidance to researchers studying SAAV peptides and developers of peptide spectrum identification tools.
format Online
Article
Text
id pubmed-8280751
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-82807512021-07-16 Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection Salz, Renee Bouwmeester, Robbin Gabriels, Ralf Degroeve, Sven Martens, Lennart Volders, Pieter-Jan ’t Hoen, Peter A.C. J Proteome Res [Image: see text] Discovery of variant peptides such as a single amino acid variant (SAAV) in shotgun proteomics data is essential for personalized proteomics. Both the resolution of shotgun proteomics methods and the search engines have improved dramatically, allowing for confident identification of SAAV peptides. However, it is not yet known if these methods are truly successful in accurately identifying SAAV peptides without prior genomic information in the search database. We studied this in unprecedented detail by exploiting publicly available long-read RNA sequences and shotgun proteomics data from the gold standard reference cell line NA12878. Searching spectra from this cell line with the state-of-the-art open modification search engine ionbot against carefully curated search databases resulted in 96.7% false-positive SAAVs and an 85% lower true positive rate than searching with peptide search databases that incorporate prior genetic information. While adding genetic variants to the search database remains indispensable for correct peptide identification, inclusion of long-read RNA sequences in the search database contributes only 0.3% new peptide identifications. These findings reveal the differences in SAAV detection that result from various approaches, providing guidance to researchers studying SAAV peptides and developers of peptide spectrum identification tools. American Chemical Society 2021-05-17 2021-06-04 /pmc/articles/PMC8280751/ /pubmed/33998808 http://dx.doi.org/10.1021/acs.jproteome.1c00264 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Salz, Renee
Bouwmeester, Robbin
Gabriels, Ralf
Degroeve, Sven
Martens, Lennart
Volders, Pieter-Jan
’t Hoen, Peter A.C.
Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection
title Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection
title_full Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection
title_fullStr Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection
title_full_unstemmed Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection
title_short Personalized Proteome: Comparing Proteogenomics and Open Variant Search Approaches for Single Amino Acid Variant Detection
title_sort personalized proteome: comparing proteogenomics and open variant search approaches for single amino acid variant detection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280751/
https://www.ncbi.nlm.nih.gov/pubmed/33998808
http://dx.doi.org/10.1021/acs.jproteome.1c00264
work_keys_str_mv AT salzrenee personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection
AT bouwmeesterrobbin personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection
AT gabrielsralf personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection
AT degroevesven personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection
AT martenslennart personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection
AT volderspieterjan personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection
AT thoenpeterac personalizedproteomecomparingproteogenomicsandopenvariantsearchapproachesforsingleaminoacidvariantdetection