Cargando…
Principles and Practice of Explainable Machine Learning
Artificial intelligence (AI) provides many opportunities to improve private and public life. Discovering patterns and structures in large troves of data in an automated manner is a core component of data science, and currently drives applications in diverse areas such as computational biology, law a...
Autores principales: | Belle, Vaishak, Papantonis, Ioannis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281957/ https://www.ncbi.nlm.nih.gov/pubmed/34278297 http://dx.doi.org/10.3389/fdata.2021.688969 |
Ejemplares similares
-
Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms
por: Danso, Samuel O., et al.
Publicado: (2021) -
A machine learning approach to quantify gender bias in collaboration practices of mathematicians
por: Steinfeldt, Christian, et al.
Publicado: (2023) -
Dependable modulation classifier explainer with measurable explainability
por: Duggal, Gaurav, et al.
Publicado: (2023) -
Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security
por: Qayyum, Adnan, et al.
Publicado: (2020) -
Editorial: Safe and Trustworthy Machine Learning
por: Kailkhura, Bhavya, et al.
Publicado: (2021)