Cargando…
Possibilistic Clustering-Promoting Semi-Supervised Learning for EEG-Based Emotion Recognition
The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and g...
Autores principales: | Dan, Yufang, Tao, Jianwen, Fu, Jianjing, Zhou, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281971/ https://www.ncbi.nlm.nih.gov/pubmed/34276295 http://dx.doi.org/10.3389/fnins.2021.690044 |
Ejemplares similares
-
Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2022) -
Possibilistic distribution distance metric: a robust domain adaptation learning method
por: Tao, Jianwen, et al.
Publicado: (2023) -
Local domain generalization with low-rank constraint for EEG-based emotion recognition
por: Tao, Jianwen, et al.
Publicado: (2023) -
Multi-Source Co-adaptation for EEG-Based Emotion Recognition by Mining Correlation Information
por: Tao, Jianwen, et al.
Publicado: (2021) -
Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition
por: Tao, Jianwen, et al.
Publicado: (2022)