Cargando…
Predicting COVID-19 cases with unknown homogeneous or heterogeneous resistance to infectivity
We present a restricted infection rate inverse binomial-based approach to better predict COVID-19 cases after a family gathering. The traditional inverse binomial (IB) model is inappropriate to match the reality of COVID-19, because the collected data contradicts the model’s requirement that varianc...
Autores principales: | Shanmugam, Ramalingam, Ledlow, Gerald, Singh, Karan P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282037/ https://www.ncbi.nlm.nih.gov/pubmed/34264972 http://dx.doi.org/10.1371/journal.pone.0254313 |
Ejemplares similares
-
Stochasticity among Victims of COVID-19 Pandemic
por: Shanmugam, Ramalingam, et al.
Publicado: (2022) -
Structural Zero Data of COVID-19 Discovers Exodus Probabilities
por: Shanmugam, Ramalingam, et al.
Publicado: (2021) -
Influences of reopening businesses and social venues: COVID-19 incidence rate in East Texas county
por: Le, Tuan D., et al.
Publicado: (2021) -
Restricted Prevalence Rates of COVID-19’s Infectivity, Hospitalization, Recovery, Mortality in the USA and Their Implications
por: Shanmugam, Ramalingam
Publicado: (2020) -
Forecasting COVID-19 pandemic: Unknown unknowns and predictive monitoring
por: Luo, Jianxi
Publicado: (2021)