Cargando…
An empirical survey of data augmentation for time series classification with neural networks
In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of add...
Autores principales: | Iwana, Brian Kenji, Uchida, Seiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282049/ https://www.ncbi.nlm.nih.gov/pubmed/34264999 http://dx.doi.org/10.1371/journal.pone.0254841 |
Ejemplares similares
-
Guided neural style transfer for shape stylization
por: Atarsaikhan, Gantugs, et al.
Publicado: (2020) -
Data Augmentation with Suboptimal Warping for Time-Series Classification
por: Kamycki, Krzysztof, et al.
Publicado: (2019) -
Data augmentation and deep neural networks for the classification of Pakistani racial speakers recognition
por: Amjad, Ammar, et al.
Publicado: (2022) -
Automatic Modulation Classification Using Hybrid Data Augmentation and Lightweight Neural Network
por: Wang, Fan, et al.
Publicado: (2023) -
Data Augmentation for Deep Neural Networks Model in EEG Classification Task: A Review
por: He, Chao, et al.
Publicado: (2021)