Cargando…
Least-squares community extraction in feature-rich networks using similarity data
We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and int...
Autores principales: | Shalileh, Soroosh, Mirkin, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282089/ https://www.ncbi.nlm.nih.gov/pubmed/34264961 http://dx.doi.org/10.1371/journal.pone.0254377 |
Ejemplares similares
-
Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method
por: Shalileh, Soroosh, et al.
Publicado: (2022) -
Fast Algorithms for Structured Least Squares and Total Least Squares Problems
por: Kalsi, Anoop, et al.
Publicado: (2006) -
Data analysis using the method of least squares: extracting the most information from experiments
por: Wolberg, J
Publicado: (2006) -
Kernelized partial least squares for feature reduction and classification of gene microarray data
por: Land, Walker H, et al.
Publicado: (2011) -
Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares
por: Jozwik, Kamila M., et al.
Publicado: (2016)