Cargando…
Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1
Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282090/ https://www.ncbi.nlm.nih.gov/pubmed/34214075 http://dx.doi.org/10.1371/journal.pgen.1009640 |
_version_ | 1783722946603253760 |
---|---|
author | Li, Shuang Li, Yuanyuan Rushing, Blake R. Harris, Sarah E. McRitchie, Susan L. Jones, Janice C. Dominguez, Daniel Sumner, Susan J. Dohlman, Henrik G. |
author_facet | Li, Shuang Li, Yuanyuan Rushing, Blake R. Harris, Sarah E. McRitchie, Susan L. Jones, Janice C. Dominguez, Daniel Sumner, Susan J. Dohlman, Henrik G. |
author_sort | Li, Shuang |
collection | PubMed |
description | Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. |
format | Online Article Text |
id | pubmed-8282090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-82820902021-07-28 Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 Li, Shuang Li, Yuanyuan Rushing, Blake R. Harris, Sarah E. McRitchie, Susan L. Jones, Janice C. Dominguez, Daniel Sumner, Susan J. Dohlman, Henrik G. PLoS Genet Research Article Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. Public Library of Science 2021-07-02 /pmc/articles/PMC8282090/ /pubmed/34214075 http://dx.doi.org/10.1371/journal.pgen.1009640 Text en © 2021 Li et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Li, Shuang Li, Yuanyuan Rushing, Blake R. Harris, Sarah E. McRitchie, Susan L. Jones, Janice C. Dominguez, Daniel Sumner, Susan J. Dohlman, Henrik G. Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 |
title | Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 |
title_full | Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 |
title_fullStr | Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 |
title_full_unstemmed | Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 |
title_short | Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1 |
title_sort | multi-omics analysis of glucose-mediated signaling by a moonlighting gβ protein asc1/rack1 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282090/ https://www.ncbi.nlm.nih.gov/pubmed/34214075 http://dx.doi.org/10.1371/journal.pgen.1009640 |
work_keys_str_mv | AT lishuang multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT liyuanyuan multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT rushingblaker multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT harrissarahe multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT mcritchiesusanl multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT jonesjanicec multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT dominguezdaniel multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT sumnersusanj multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 AT dohlmanhenrikg multiomicsanalysisofglucosemediatedsignalingbyamoonlightinggbproteinasc1rack1 |