Cargando…
Resample aggregating improves the generalizability of connectome predictive modeling
It is a longstanding goal of neuroimaging to produce reliable, generalizable models of brain behavior relationships. More recently, data driven predictive models have become popular. However, overfitting is a common problem with statistical models, which impedes model generalization. Cross validatio...
Autores principales: | O’Connor, David, Lake, Evelyn M.R., Scheinost, Dustin, Constable, R. Todd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282199/ https://www.ncbi.nlm.nih.gov/pubmed/33848621 http://dx.doi.org/10.1016/j.neuroimage.2021.118044 |
Ejemplares similares
-
Transdiagnostic, Connectome-Based Prediction of Memory Constructs Across Psychiatric Disorders
por: Barron, Daniel S, et al.
Publicado: (2020) -
Arousal impacts distributed hubs modulating the integration of brain
functional connectivity
por: Lee, Kangjoo, et al.
Publicado: (2022) -
Ten simple rules for predictive modeling of individual differences in neuroimaging
por: Scheinost, Dustin, et al.
Publicado: (2019) -
Does prenatal stress alter the developing connectome?
por: Scheinost, Dustin, et al.
Publicado: (2017) -
A cognitive state transformation model for task-general and task-specific subsystems of the brain connectome
por: Yoo, Kwangsun, et al.
Publicado: (2022)