Cargando…
Deep Neural Network Analysis of Pathology Images With Integrated Molecular Data for Enhanced Glioma Classification and Grading
Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This...
Autores principales: | Pei, Linmin, Jones, Karra A., Shboul, Zeina A., Chen, James Y., Iftekharuddin, Khan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282424/ https://www.ncbi.nlm.nih.gov/pubmed/34277415 http://dx.doi.org/10.3389/fonc.2021.668694 |
Ejemplares similares
-
Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas using MR Imaging Features
por: Shboul, Zeina A., et al.
Publicado: (2020) -
Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction
por: Shboul, Zeina A., et al.
Publicado: (2019) -
Joint Modeling of RNAseq and Radiomics Data for Glioma Molecular Characterization and Prediction
por: Shboul, Zeina A., et al.
Publicado: (2021) -
Context aware deep learning for brain tumor segmentation, subtype classification, and survival prediction using radiology images
por: Pei, Linmin, et al.
Publicado: (2020) -
Prediction of Rapid Early Progression and Survival Risk with Pre-Radiation MRI in WHO Grade 4 Glioma Patients
por: Farzana, Walia, et al.
Publicado: (2023)