Cargando…
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
Cryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on global B-factor correction, suffer from limitations...
Autores principales: | Sanchez-Garcia, Ruben, Gomez-Blanco, Josue, Cuervo, Ana, Carazo, Jose Maria, Sorzano, Carlos Oscar S., Vargas, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282847/ https://www.ncbi.nlm.nih.gov/pubmed/34267316 http://dx.doi.org/10.1038/s42003-021-02399-1 |
Ejemplares similares
-
Measuring local-directional resolution and local anisotropy in cryo-EM maps
por: Vilas, Jose Luis, et al.
Publicado: (2020) -
Deep Consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy
por: Sanchez-Garcia, Ruben, et al.
Publicado: (2018) -
Principal component analysis is limited to low-resolution analysis in cryoEM
por: Sorzano, Carlos Oscar S., et al.
Publicado: (2021) -
Emerging Themes in CryoEM—Single Particle Analysis
Image Processing
por: Vilas, Jose Luis, et al.
Publicado: (2022) -
Higher resolution in cryo-EM by the combination of macromolecular prior knowledge and image-processing tools
por: Ramírez-Aportela, Erney, et al.
Publicado: (2022)