Cargando…
Optimization of Task Allocation for Collaborative Brain–Computer Interface Based on Motor Imagery
OBJECTIVE: Collaborative brain–computer interfaces (cBCIs) can make the BCI output more credible by jointly decoding concurrent brain signals from multiple collaborators. Current cBCI systems usually require all collaborators to execute the same mental tasks (common-work strategy). However, it is st...
Autores principales: | Gu, Bin, Xu, Minpeng, Xu, Lichao, Chen, Long, Ke, Yufeng, Wang, Kun, Tang, Jiabei, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282908/ https://www.ncbi.nlm.nih.gov/pubmed/34276292 http://dx.doi.org/10.3389/fnins.2021.683784 |
Ejemplares similares
-
Resting-State EEG in Alpha Rhythm May Be Indicative of the Performance of Motor Imagery-Based Brain–Computer Interface
por: Wang, Kun, et al.
Publicado: (2022) -
Transformed common spatial pattern for motor imagery-based brain-computer interfaces
por: Ma, Zhen, et al.
Publicado: (2023) -
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
por: Subasi, Abdulhamit, et al.
Publicado: (2021) -
Effects of Distracting Task with Different Mental Workload on Steady-State Visual Evoked Potential Based Brain Computer Interfaces—an Offline Study
por: Zhao, Yawei, et al.
Publicado: (2018) -
Temporal Combination Pattern Optimization Based on Feature Selection Method for Motor Imagery BCIs
por: Jiang, Jing, et al.
Publicado: (2020)