Cargando…
Reliable determination of the growth and hydrogen production parameters of the photosynthetic bacterium Rhodobacter capsulatus in fed batch culture using a combination of the Gompertz function and the Luedeking-Piret model
In this study, experimental results of hydrogen producing process based on anaerobic photosynthesis using the purple non-sulfur bacterium Rhodobacter capsulatus are scrutinized. The bacterial culture was carried out in a photo-bioreactor operated in a quasi-continuous mode, using lactate as a carbon...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282963/ https://www.ncbi.nlm.nih.gov/pubmed/34296001 http://dx.doi.org/10.1016/j.heliyon.2021.e07394 |
Sumario: | In this study, experimental results of hydrogen producing process based on anaerobic photosynthesis using the purple non-sulfur bacterium Rhodobacter capsulatus are scrutinized. The bacterial culture was carried out in a photo-bioreactor operated in a quasi-continuous mode, using lactate as a carbon source. The method is based on the continuous stirred tank reactors (CSTR) technique to access kinetic parameters. The dynamic evolution of hydrogen production as a function of time was accurately simulated using Luedeking-Piret model and the growth of R. capsulatus was computed using Gompertz model. The combination of both models was successfully applied to determine the relevant parameters (λ, μ(max), α and β) for two R. capsulatus strains studied: the wild-type strain B10 and the H(2) over-producing mutant IR3. The mathematical description indicates that the photofermentation is more promising than dark fermentation for the conversion of organic substrates into biogas. |
---|