Cargando…

Subcutaneous infusion of neurosecretory protein GL promotes fat accumulation in mice

We recently identified a novel small secretory protein, neurosecretory protein GL (NPGL), in the vertebrate hypothalamus. We revealed that NPGL is involved in energy homeostasis using intracerebroventricular infusion in rodents. However, the effect of NPGL through peripheral administration remains t...

Descripción completa

Detalles Bibliográficos
Autores principales: Narimatsu, Yuki, Fukumura, Keisuke, Iwakoshi-Ukena, Eiko, Mimura, Ayaka, Furumitsu, Megumi, Ukena, Kazuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282975/
https://www.ncbi.nlm.nih.gov/pubmed/34296011
http://dx.doi.org/10.1016/j.heliyon.2021.e07502
Descripción
Sumario:We recently identified a novel small secretory protein, neurosecretory protein GL (NPGL), in the vertebrate hypothalamus. We revealed that NPGL is involved in energy homeostasis using intracerebroventricular infusion in rodents. However, the effect of NPGL through peripheral administration remains to be elucidated and may be important for therapeutic use. In this study, we performed subcutaneous infusion of NPGL in mice for 12 days and found that it accelerated fat accumulation in white adipose tissue (WAT) without increasing in body mass gain and food intake. The mass of the testis, liver, kidney, heart, and gastrocnemius muscle remained unchanged. Analysis of mRNA expression by quantitative reverse transcription-polymerase chain reaction showed that proopiomelanocortin was suppressed in the hypothalamus by the infusion of NPGL. We observed a decreasing tendency in serum triglyceride levels due to NPGL, while serum glucose, insulin, leptin, and free fatty acids levels were unchanged. These results suggest that the peripheral administration of NPGL induces fat accumulation in WAT via the hypothalamus.