Cargando…
Machine learning for prediction of diabetes risk in middle-aged Swedish people
AIMS: To study if machine learning methodology can be used to detect persons with increased type 2 diabetes or prediabetes risk among people without known abnormal glucose regulation. METHODS: Machine learning and interpretable machine learning models were applied on research data from Stockholm Dia...
Autores principales: | Lama, Lara, Wilhelmsson, Oskar, Norlander, Erik, Gustafsson, Lars, Lager, Anton, Tynelius, Per, Wärvik, Lars, Östenson, Claes-Göran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282976/ https://www.ncbi.nlm.nih.gov/pubmed/34296003 http://dx.doi.org/10.1016/j.heliyon.2021.e07419 |
Ejemplares similares
-
Fruit and vegetable intake and risk of prediabetes and type 2 diabetes: results from a 20-year long prospective cohort study in Swedish men and women
por: Barouti, Afroditi Alexandra, et al.
Publicado: (2022) -
Fasting plasma glucose and serum 25-hydroxy vitamin D levels in individuals with Middle Eastern and Swedish descent
por: Taloyan, Marina, et al.
Publicado: (2023) -
Cohort Profile: The Stockholm Diabetes Prevention Programme (SDPP)
por: Gudjonsdottir, Hrafnhildur, et al.
Publicado: (2022) -
Work Stress, Sense of Coherence, and Risk of Type 2 Diabetes in a Prospective Study of Middle-Aged Swedish Men and Women
por: Eriksson, Anna-Karin, et al.
Publicado: (2013) -
“I Did Not Believe You Could Get Better”—Reversal of Diabetes Risk Through Dietary Changes in Older Persons with Prediabetes in Region Stockholm
por: Timm, Linda, et al.
Publicado: (2019)