Cargando…
Automated Left Ventricle Ischemic Scar Detection in CT Using Deep Neural Networks
Objectives: The aim of this study is to develop a scar detection method for routine computed tomography angiography (CTA) imaging using deep convolutional neural networks (CNN), which relies solely on anatomical information as input and is compatible with existing clinical workflows. Background: Ide...
Autores principales: | O'Brien, Hugh, Whitaker, John, Singh Sidhu, Baldeep, Gould, Justin, Kurzendorfer, Tanja, O'Neill, Mark D., Rajani, Ronak, Grigoryan, Karine, Rinaldi, Christopher Aldo, Taylor, Jonathan, Rhode, Kawal, Mountney, Peter, Niederer, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283258/ https://www.ncbi.nlm.nih.gov/pubmed/34277724 http://dx.doi.org/10.3389/fcvm.2021.655252 |
Ejemplares similares
-
Radiomics and Machine Learning for Detecting Scar Tissue on CT Delayed Enhancement Imaging
por: O'Brien, Hugh, et al.
Publicado: (2022) -
3D/2D model-to-image registration by imitation learning for cardiac procedures
por: Toth, Daniel, et al.
Publicado: (2018) -
Effect of scar and pacing location on repolarization in a porcine myocardial infarction model
por: Elliott, Mark K., et al.
Publicado: (2022) -
Assessing long-term survival and hospitalization following transvenous lead extraction in patients with cardiac resynchronization therapy devices: A propensity score–matched analysis
por: Mehta, Vishal S., et al.
Publicado: (2021) -
Chronic ventricular lead perforation: Expect the unexpected
por: Sidhu, Baldeep S., et al.
Publicado: (2019)