Cargando…
Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens
Forecasting pharmacokinetics (PK) for individual patients is a fundamental problem in clinical pharmacology. One key challenge is that PK models constructed using data from one dosing regimen must predict PK data for different dosing regimen(s). We propose a deep learning approach based on neural or...
Autores principales: | Lu, James, Deng, Kaiwen, Zhang, Xinyuan, Liu, Gengbo, Guan, Yuanfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283337/ https://www.ncbi.nlm.nih.gov/pubmed/34308294 http://dx.doi.org/10.1016/j.isci.2021.102804 |
Ejemplares similares
-
Impact of Dose Delays and Alternative Dosing Regimens on Pertuzumab Pharmacokinetics
por: Liu, Stephanie N., et al.
Publicado: (2021) -
Treatment Stratification of Patients with Metastatic Castration-Resistant Prostate Cancer by Machine Learning
por: Deng, Kaiwen, et al.
Publicado: (2019) -
Explainable deep learning for tumor dynamic modeling and overall survival prediction using Neural-ODE
por: Laurie, Mark, et al.
Publicado: (2023) -
Hierarchical optimization for the efficient parametrization of ODE models
por: Loos, Carolin, et al.
Publicado: (2018) -
MOCCASIN: converting MATLAB ODE models to SBML
por: Gómez, Harold F., et al.
Publicado: (2016)