Cargando…

Increase of SARS-CoV-2 RNA load in faecal samples prompts for rethinking of SARS-CoV-2 biology and COVID-19 epidemiology

Background Scientific evidence for the involvement of human microbiota in the development of COVID-19 disease has been reported recently. SARS-CoV-2 RNA presence in human faecal samples and SARS-CoV-2 activity in faeces from COVID-19 patients have been observed. Methods Starting from these observati...

Descripción completa

Detalles Bibliográficos
Autores principales: Petrillo, Mauro, Brogna, Carlo, Cristoni, Simone, Querci, Maddalena, Piazza, Ornella, Van den Eede, Guy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283343/
https://www.ncbi.nlm.nih.gov/pubmed/34336189
http://dx.doi.org/10.12688/f1000research.52540.3
Descripción
Sumario:Background Scientific evidence for the involvement of human microbiota in the development of COVID-19 disease has been reported recently. SARS-CoV-2 RNA presence in human faecal samples and SARS-CoV-2 activity in faeces from COVID-19 patients have been observed. Methods Starting from these observations, an experimental design was developed to cultivate in vitro faecal microbiota from infected individuals, to monitor the presence of SARS-CoV-2, and to collect data on the relationship between faecal bacteria and the virus. Results Our results indicate that SARS-CoV-2 replicates in vitro in bacterial growth medium, that the viral replication follows bacterial growth and it is influenced by the administration of specific antibiotics. SARS-CoV-2-related peptides have been detected in 30-day bacterial cultures and characterised. Discussion Our observations are compatible with a ‘bacteriophage-like’ behaviour of SARS-CoV-2, which, to our knowledge has not been observed or described before. These results are unexpected and hint towards a novel hypothesis on the biology of SARS-CoV-2 and on the COVID-19 epidemiology. The discovery of possible new modes of action of SARS-CoV-2 has far-reaching implications for the prevention and the treatment of the disease.