Cargando…
Prediction of Multiple sclerosis disease using machine learning classifiers: a comparative study
INTRODUCTION: Hamedan Province is one of Iran’s high-risk regions for Multiple Sclerosis (MS). Early diagnosis of MS based on an accurate system can control the disease. The aim of this study was to compare the performance of four machine learning techniques with traditional methods for predicting M...
Autores principales: | DARVISHI, SONIA, HAMIDI, OMID, POOROLAJAL, JALAL |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pacini Editore Srl
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283630/ https://www.ncbi.nlm.nih.gov/pubmed/34322636 http://dx.doi.org/10.15167/2421-4248/jpmh2021.62.1.1651 |
Ejemplares similares
-
Prediction of Kidney Graft Rejection Using Artificial Neural Network
por: Tapak, Leili, et al.
Publicado: (2017) -
Real-Data Comparison of Data Mining Methods in Prediction of Diabetes in Iran
por: Tapak, Lily, et al.
Publicado: (2013) -
Landmark Prediction of Survival for Breast Cancer Patients: A Case Study in Tehran, Iran
por: ALAFCHI, Behnaz, et al.
Publicado: (2019) -
Identifying Important Risk Factors for Survival in Kidney Graft Failure Patients Using Random Survival Forests
por: HAMIDI, Omid, et al.
Publicado: (2016) -
Prediction of disease progression and outcomes in multiple sclerosis with machine learning
por: Pinto, Mauro F., et al.
Publicado: (2020)