Cargando…
ImputEHR: A Visualization Tool of Imputation for the Prediction of Biomedical Data
Electronic health records (EHRs) have been widely adopted in recent years, but often include a high proportion of missing data, which can create difficulties in implementing machine learning and other tools of personalized medicine. Completed datasets are preferred for a number of analysis methods,...
Autores principales: | Zhou, Yi-Hui, Saghapour, Ehsan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283820/ https://www.ncbi.nlm.nih.gov/pubmed/34276792 http://dx.doi.org/10.3389/fgene.2021.691274 |
Ejemplares similares
-
Assessment of Imputation Quality: Comparison of Phasing and Imputation Algorithms in Real Data
por: Stahl, Katharina, et al.
Publicado: (2021) -
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019) -
AdImpute: An Imputation Method for Single-Cell RNA-Seq Data Based on Semi-Supervised Autoencoders
por: Xu, Li, et al.
Publicado: (2021) -
Strategies for Obtaining and Pruning Imputed Whole-Genome Sequence Data for Genomic Prediction
por: Ye, Shaopan, et al.
Publicado: (2019) -
A Review of Integrative Imputation for Multi-Omics Datasets
por: Song, Meng, et al.
Publicado: (2020)