Cargando…
Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis
BACKGROUND: Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. METHODS: Bioinformatic analysis and high-throughput RNA sequencing tools were employ...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283840/ https://www.ncbi.nlm.nih.gov/pubmed/34271943 http://dx.doi.org/10.1186/s13046-021-02027-0 |
Sumario: | BACKGROUND: Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. METHODS: Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422. RESULTS: We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells. CONCLUSIONS: Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-021-02027-0. |
---|