Cargando…
Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury
The heterogeneity of traumatic brain injury (TBI)-induced secondary injury has greatly hampered the development of effective treatments for TBI patients. Targeting common processes across species may be an innovative strategy to combat debilitating TBI. In the present study, a cross-species transcri...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284282/ https://www.ncbi.nlm.nih.gov/pubmed/33318400 http://dx.doi.org/10.4103/1673-5374.301028 |
_version_ | 1783723369874587648 |
---|---|
author | Yang, Meng-Shi Xu, Xiao-Jian Zhang, Bin Niu, Fei Liu, Bai-Yun |
author_facet | Yang, Meng-Shi Xu, Xiao-Jian Zhang, Bin Niu, Fei Liu, Bai-Yun |
author_sort | Yang, Meng-Shi |
collection | PubMed |
description | The heterogeneity of traumatic brain injury (TBI)-induced secondary injury has greatly hampered the development of effective treatments for TBI patients. Targeting common processes across species may be an innovative strategy to combat debilitating TBI. In the present study, a cross-species transcriptome comparison was performed for the first time to determine the fundamental processes of secondary brain injury in Sprague-Dawley rat and C57/BL6 mouse models of TBI, caused by acute controlled cortical impact. The RNA sequencing data from the mouse model of TBI were downloaded from the Gene Expression Omnibus (ID: GSE79441) at the National Center for Biotechnology Information. For the rat data, peri-injury cerebral cortex samples were collected for transcriptomic analysis 24 hours after TBI. Differentially expressed gene-based functional analysis revealed that common features between the two species were mainly involved in the regulation and activation of the innate immune response, including complement cascades as well as Toll-like and nucleotide oligomerization domain-like receptor pathways. These findings were further corroborated by gene set enrichment analysis. Moreover, transcription factor analysis revealed that the families of signal transducers and activators of transcription (STAT), basic leucine zipper (BZIP), Rel homology domain (RHD), and interferon regulatory factor (IRF) transcription factors play vital regulatory roles in the pathophysiological processes of TBI, and are also largely associated with inflammation. These findings suggest that targeting the common innate immune response might be a promising therapeutic approach for TBI. The animal experimental procedures were approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 201802001) on June 6, 2018. |
format | Online Article Text |
id | pubmed-8284282 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-82842822021-07-27 Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury Yang, Meng-Shi Xu, Xiao-Jian Zhang, Bin Niu, Fei Liu, Bai-Yun Neural Regen Res Research Article The heterogeneity of traumatic brain injury (TBI)-induced secondary injury has greatly hampered the development of effective treatments for TBI patients. Targeting common processes across species may be an innovative strategy to combat debilitating TBI. In the present study, a cross-species transcriptome comparison was performed for the first time to determine the fundamental processes of secondary brain injury in Sprague-Dawley rat and C57/BL6 mouse models of TBI, caused by acute controlled cortical impact. The RNA sequencing data from the mouse model of TBI were downloaded from the Gene Expression Omnibus (ID: GSE79441) at the National Center for Biotechnology Information. For the rat data, peri-injury cerebral cortex samples were collected for transcriptomic analysis 24 hours after TBI. Differentially expressed gene-based functional analysis revealed that common features between the two species were mainly involved in the regulation and activation of the innate immune response, including complement cascades as well as Toll-like and nucleotide oligomerization domain-like receptor pathways. These findings were further corroborated by gene set enrichment analysis. Moreover, transcription factor analysis revealed that the families of signal transducers and activators of transcription (STAT), basic leucine zipper (BZIP), Rel homology domain (RHD), and interferon regulatory factor (IRF) transcription factors play vital regulatory roles in the pathophysiological processes of TBI, and are also largely associated with inflammation. These findings suggest that targeting the common innate immune response might be a promising therapeutic approach for TBI. The animal experimental procedures were approved by the Beijing Neurosurgical Institute Animal Care and Use Committee (approval No. 201802001) on June 6, 2018. Wolters Kluwer - Medknow 2020-12-12 /pmc/articles/PMC8284282/ /pubmed/33318400 http://dx.doi.org/10.4103/1673-5374.301028 Text en Copyright: © 2021 Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Yang, Meng-Shi Xu, Xiao-Jian Zhang, Bin Niu, Fei Liu, Bai-Yun Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
title | Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
title_full | Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
title_fullStr | Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
title_full_unstemmed | Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
title_short | Comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
title_sort | comparative transcriptomic analysis of rat versus mouse cerebral cortex after traumatic brain injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284282/ https://www.ncbi.nlm.nih.gov/pubmed/33318400 http://dx.doi.org/10.4103/1673-5374.301028 |
work_keys_str_mv | AT yangmengshi comparativetranscriptomicanalysisofratversusmousecerebralcortexaftertraumaticbraininjury AT xuxiaojian comparativetranscriptomicanalysisofratversusmousecerebralcortexaftertraumaticbraininjury AT zhangbin comparativetranscriptomicanalysisofratversusmousecerebralcortexaftertraumaticbraininjury AT niufei comparativetranscriptomicanalysisofratversusmousecerebralcortexaftertraumaticbraininjury AT liubaiyun comparativetranscriptomicanalysisofratversusmousecerebralcortexaftertraumaticbraininjury |